Quantum Physics 141

Problem Set 2 National Institute of Physics (Dated: September 28, 2018)

Deadline: 9 October 2018

I. ANGULAR MOMENTUM CONSERVATION [20 pts]

Let $V(\mathbf{r}) = V(r)$ be a spherically symmetric potential so that the Hamiltonian is

$$\hat{H} = -\frac{\hbar^2}{2m} \nabla^2 + V(r).$$
(1)

Write the $\hat{\mathbf{L}}^2$ and \hat{L}_z operators in differential form using a (θ, ϕ) -representation and prove that

10 pts $[\hat{H}, \hat{\mathbf{L}}^2] = 0,$ 10 pts $[\hat{H}, \hat{L}_z] = 0.$

II. ACTION OF AM LADDER OPERATORS [20 pts]

[GR2 4.18] Let $|l, m\rangle$ be simultaneous eigenkets of \mathbf{L}^2 and L_z corresponding to eigenvalues $l(l+1)\hbar^2$ and $m\hbar$, respectively. Knowing that

$$L^{\pm} |l, m\rangle = C_{lm} |l, m \pm 1\rangle, \qquad (2)$$

provided that $m\pm 1$ does not exceed its allowed values, calculate the normalization constant C_{lm} that ensures $\langle l,m|l,m\rangle=\langle l,m\pm 1|l,m\pm 1\rangle=1$.