Course outline for Physics 271: Solid State Physics I

Francis N. C. Paraan (F313, R301)* National Institute of Physics (Dated: August 13, 2016)

I. COURSE INFORMATION

Description: Fundamental principles of the physics of solids. Topics include periodic structure, lattice waves, electron states, static properties of solids, electron-electron interaction, dynamics of electrons in solids.

Web: nip.upd.edu.ph/sand/physics271.

References: Ashcroft and Mermin (AM), Grosso Parravicini (GP), Kittel (QTS), Phillips (PP).

Prerequisite: Physics 170, Physics 242/equivalents.

Credits: 3.0

II. CLASS POLICIES

- Attendance: University rules state that students that accumulate six or more absences may be given a failing grade (5.0) if they do not drop the course.
- Long exams: There will be three long examinations of equal weights, which constitute 3/4 of the final grade. One make up exam replaces an exam missed due to an excused absence. Further missed exams and unexcused missed exams will be given a grade of zero.

Raw score x	Point grade
$90\% \le x \le 100\%$	1.00
$85\% \leq x < 90\%$	1.25
$80\% \leq x < 85\%$	1.50
$75\% \leq x < 80\%$	1.75
$70\% \le x < 75\%$	2.00
$65\% \leq x < 70\%$	2.25
$60\% \leq x < 65\%$	2.50
$55\% \leq x < 60\%$	2.75
$50\% \le x < 55\%$	3.00
$45\% \leq x < 50\%$	4.00
x < 45%	5.00

* fparaan@nip.upd.edu.ph

- **Problem sets:** Problem sets make up the remaining 1/4 of the final grade. Late sets will not be given any credit.
- Academic honesty: Any form of cheating in examinations or any act of dishonesty in relation to studies, such as plagiarism, shall be subject to disciplinary action.

III. LECTURE OUTLINE

A. Electron gases

- 0. Administrative. Drude model. [AM 1]
- 1. Sommerfeld model. [AM 2]
- 2. Crystal lattices. [AM 4]
- 3. Reciprocal lattice. [AM 5]
- 4. X-ray diffraction. Crystal Structures [AM 7]
- 5. Electrons in periodic potentials 1. Bloch theorem. [AM 8]
- 6. Electrons in periodic potentials 2. 1D potentials and Kronig-Penney model. [AM 8]
- 7. Electrons in periodic potentials 3. Weak potentials. [AM 9]
- 8. Tight binding. [AM 10]
- 9. Semiclassical model. [AM 12-13]
- 10. Refinements to the Drude model and independent electron approximations. [AM 16-17]
- 11. Phonons. [AM 21-23, 26]
- 12. Dielectrics. [AM 27]
- 13. Semiconductors. [AM 28-29]
- 14. Diamagnetism and paramagnetism. [AM 31]