Course outline for Physics 111: Mathematical Physics I

Francis N. C. Paraan (F313, R301)* National Institute of Physics (Dated: August 2017)

I. COURSE INFORMATION

Description: Mathematical methods for physicists I. Abstract linear spaces and operators; matrix algebra, vector and tensor analysis.

Web: sand.nip.upd.edu.ph/physics111

References: Arfken $5^{\text{th}}/6^{\text{th}}$ (AR).

Corequisite: Math 55.

Credits: 3.0

Section: THU-1 (TTh 10:00–11:30 AM).

Location: F208

II. CLASS POLICIES

- Attendance: University rules state that students that accumulate six or more absences shall be given a failing grade (5.0) if they do not drop the course.
- Long Exams: There will be three sit-in long examinations of equal weights, which constitute 3/4 of the final grade. One make up exam replaces an exam missed due to a documented excused absence. Further missed exams and unexcused missed exams will be given a grade of zero.

Raw score x	Point grade
$90\% \le x \le 100\%$	1.00
$85\% \leq x < 90\%$	1.25
$80\% \leq x < 85\%$	1.50
$75\% \leq x < 80\%$	1.75
$70\% \le x < 75\%$	2.00
$65\% \leq x < 70\%$	2.25
$60\% \leq x < 65\%$	2.50
$55\% \leq x < 60\%$	2.75
$50\% \leq x < 55\%$	3.00
$45\% \leq x < 50\%$	4.00
x < 45%	5.00

^{*} fparaan@nip.upd.edu.ph

- **Problem Sets:** Problem sets and attendance quizzes make up the remaining 1/4 of the final grade. Late sets will not be given any credit. All sets must be submitted to complete the course.
- Academic honesty: Any form of cheating in examinations or any act of dishonesty in relation to studies, such as plagiarism, shall be subject to disciplinary action.

III. LECTURE OUTLINE

First day of classes : T 08 Aug 2017.

A. Linear algebra

- 1. Matrices and vectors. Index notation. Kronecker delta.
- 2. Matrix algebra.
- 3. Determinants. Levi Cevita symbol.
- 4. Matrix inversion.
- 5. Orthogonal matrices.
- 6. Hermitian and unitary matrices.
- 7. Complex vector spaces. Bra-ket notation.
- 8. Eigenvalue problem.
- 9. Diagonalization.
- 10. Diagonalization of Hermitian matrices.
- 11. Non-degenerate and degenerate eigenvalues.
- 12. Functions of matrices.

First LE : Th 14 Sep 2017

B. Vector calculus

- 1. Definitions.
- 2. Rotation of coordinate axes. Vector spaces.
- 3. Scalar and vector products.

- 4. Triple products. Gradient fields.
- 5. Divergence and curl.
- 6. Vector integration.
- 7. Integration theorems.
- 8. Potential theory.
- 9. Gauss's Law.
- 10. Dirac delta function

Second LE : Th 19 Oct 2017

C. Curvilinear coordinates and tensor analysis

- 1. Orthogonal coordinates. Metric. Jacobians. Scale factors.
- 2. Differential operators in orthogonal coordinate systems.
- 3. Cylindrical and spherical coordinates.
- 4. Orthogonal matrices and transformations.
- 5. Tensors I. Contravariant and covariant tensors
- 6. Tensors II. Contraction and direct products
- 7. Tensors III. Covariant formulation of EM

D. Random variables

- 1. Stochastic variables.
- 2. Moments and cumulants.
- 3. Generating functions.

Third LE : Th 07 Dec 2017