Quantum Physics 142 and 204.6

Problem Set 1

National Institute of Physics

Deadline: 16 October 2020

Conventions: Let $\left|j, m_{j}\right\rangle$ be the simultaneous eigenket of \mathbf{J}^{2} and J_{z} with corresponding eigenvalues $j(j+1) \hbar^{2}$ and $m_{j} \hbar$, respectively. Consider the angular momentum addition $\mathbf{J}_{1}+\mathbf{J}_{2}=\mathbf{J}$. When the quantum numbers j_{1} and j_{2} are fixed, we can use the following abbreviations for the decoupled basis elements:

$$
\begin{equation*}
\left|j_{1}, m_{1}\right\rangle\left|j_{2}, m_{2}\right\rangle \equiv\left|m_{1} m_{2}\right\rangle, \tag{1}
\end{equation*}
$$

and for the coupled basis elements:

$$
\begin{equation*}
\left|j_{1} j_{2} j, m\right\rangle \equiv|j, m\rangle . \tag{2}
\end{equation*}
$$

Note the location of the comma.

I. HYDROGEN ATOM EIGENFUNCTIONS [30 pts]

Consider the Coulomb potential

$$
\begin{equation*}
V(\mathbf{r})=-\frac{k}{r}, \quad k=\frac{e^{2}}{4 \pi \epsilon_{0}} . \tag{3}
\end{equation*}
$$

Do not consider spin.
10 pts Obtain the ground state energy eigenvalue and the corresponding eigenfunction. Write the eigenfunction in terms of the Bohr radius a_{0}.

20 pts Obtain the first excited state energy eigenvalue and the corresponding eigenfunction/s. If the eigenvalue is degenerate, orthonormalize the eigenfunctions.

II. HYDROGEN ATOM EIGENFUNCTIONS [30 pts]

Consider the Coulomb potential

$$
\begin{equation*}
V(\mathbf{r})=-\frac{k}{r}, \quad k=\frac{e^{2}}{4 \pi \epsilon_{0}} . \tag{4}
\end{equation*}
$$

Do not consider spin.

10 pts Obtain the ground state energy eigenvalue and the corresponding eigenfunction. Write the eigenfunction in terms of the Bohr radius a_{0}.

20 pts Obtain the first excited state energy eigenvalue and the corresponding eigenfunction/s. If the eigenvalue is degenerate, orthonormalize the eigenfunctions.

III. ANGULAR MOMENTUM ADDITION [30 pts]

Let $\mathbf{J}^{2}=(\mathbf{L}+\mathbf{S})^{2}$ and consider the angular momentum subspace with quantum numbers $l=1$ and $s=1 / 2$.

10 pts Give all of the normalized simultaneous eigenvectors of $\mathbf{L}^{2}, \mathbf{S}^{2}, \mathbf{J}^{2}, J_{z}$ in the coupled basis $\{|j, m\rangle\}$.

10 pts Use the ladder operator method or a table of Clebsch-Gordan coefficients to write each of the coupled basis elements as a linear combination of decoupled basis elements $\left|m_{l} m_{s}\right\rangle$. You may use $m_{l} \in\{-1,0,+1\}$ and $m_{s} \in\{\uparrow, \downarrow\}$.

10 pts Give all possible outcomes of measurements of the observable $\mathbf{L} \cdot \mathbf{S}$.

IV. SPINOR [30 pts]

Given a magnetic field $\mathbf{B}=B_{x} \hat{\mathbf{x}}+B_{y} \hat{\mathbf{y}}+B_{z} \hat{\mathbf{z}}$:
10 pts Write down the Hamiltonian $H=-\gamma \mathbf{B} \cdot \mathbf{S}$ as a 2×2 matrix.

20 pts Obtain the eigenspinors of this Hamiltonian and their corresponding eigenvalues.

V. SPIN PRECESSION [50 pts]

Let a spin- $1 / 2$ system be in the initial state

$$
\begin{equation*}
\chi(0)=\frac{1}{\sqrt{2}}\binom{1}{-1} . \tag{5}
\end{equation*}
$$

10 pts Determine if $\chi(0)$ is a stationary state of S_{x} or not.
20 pts Obtain the time development of $\chi(t)$ of this state under the Hamiltonian $\hat{H}=-\gamma B S_{z}$.

20 pts Show that the time development of the expectation values $\left\langle S_{x}(t)\right\rangle,\left\langle S_{y}(t)\right\rangle$, and $\left\langle S_{z}(t)\right\rangle$ describes a precessing vector. What is the frequency of precession?

VI. UNCERTAINTY RELATION [30 pts]

10 pts Use the commutation relation between angular momentum components to obtain the following uncertainty relation: $\Delta J_{x} \Delta J_{y} \geq \frac{\hbar}{2}\left|\left\langle J_{z}\right\rangle\right|$.

20 pts Verify this uncertainty relation for the preceding example of spin precession. That is, evaluate the needed expectation values with respect to $\chi(t)$.

