Pre-collision dynamics of short 1D anharmonic chains


This paper investigates the dynamics of short one-dimensional lattices having a temperature gradient. An anharmonic potential using the Fermi-Pasta-Ulam (FPU) model was assumed. Three different systems were studied: a uniform chain, a chain with a single impurity, and a diatomic chain. Numerical simulations using the fourth order Runge-Kutta algorithm was used to solve the equations of motion. An impurity in the chain serves as a “thermal barrier”. In the diatomic lattice, an energy excitation is formed even before any particle collision occurs. Here the energy distribution at different times will be shown.